

PREDICTABLE

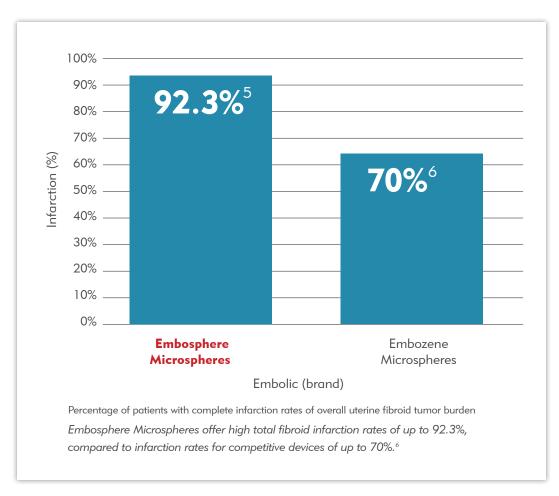
Embosphere Microspheres temporarily compress up to 33% for smooth microcatheter passage. Once through the microcatheter, they return to their original spherical shape and stated diameter for predictable, reliable delivery.¹

TARGETED

Embosphere Microspheres show a direct correlation between the level of arterial occlusion and the size of the particles used, allowing for consistent and reliable targeted occlusion.²

ESTABLISHED

Embosphere Microspheres have been proven:


- in over 25 years of clinical experience, treating more than 800,000 patients worldwide⁴
- in over 8,000 procedures reported in clinical studies⁴
- in more than 135 pivotal articles⁴

NON-AGGREGATING PROPERTIES

The hydrophilic surface and spherical shape of Embosphere Microspheres prevent aggregation in the catheter lumen and vasculature.¹

PREDICTABLE AND TARGETED DELIVERY

Embosphere Microspheres' rebound capabilities help maintain a spherical shape for predictable distribution and occlusion.^{1,3} In contrast, Embozene® Microspheres show a higher degree of in vivo deformation, resulting in unpredictable occlusion.³

UFE rates are defined differently; results are from different studies and may vary in head-to-head comparison. Graphics are for illustration purposes only.

Based on the clinical evidence reported in published studies over the past 24 years, Embosphere Microspheres exhibit high efficacy rates in the treatment of uterine fibroids.

SPECIFIC SIZE RANGES

Embosphere Microspheres are available in seven specific size ranges to allow for consistent and reliable occlusion².

ORDERING INFORMATION EMBOSPHERE MICROSPHERES IN A PREFILLED SYRINGE

Catalog Number 1-mL Syringe	Catalog Number 2-mL Syringe	Size Range	Packaging Color
	S020GH	50–100 μm	Gray
	S120GH	40–120 μm	Orange
S210GH	S220GH	100–300 μm	Yellow
S410GH	S420GH	300–500 μm	Blue
S610GH	S620GH	500–700 μm	Red
S810GH	S820GH	700–900 μm	Green
S1010GH	S1020GH	900–1200 μm	Purple

EMBOSPHERE MICROSPHERES IN A VIAL

Catalog Number 1-mL Vial	Catalog Number 2-mL Vial	Size Range	Packaging Color
V110GH	V120GH	40–120 μm	Orange O
V210GH	V220GH	100–300 μm	Yellow
V410GH	V420GH	300–500 μm	Blue
V610GH	V620GH	500–700 μm	Red •
V810GH	V820GH	700–900 μm	Green
V1010GH	V1020GH	900–1200 μm	Purple

Embosphere Microspheres are packaged with saline in a 8-mL vial. Packaged 5 vials per box.

REFERENCES

- 1. Laurent et al. 1996. "Trisacryl Gelatin Microspheres for Therapeutic Embolization, I: Development and In Vitro Evaluation." Am J Neuroradiol 17, no. 3 (Mar): 533–40.
- 2. Pelage et al. 2002. "Uterine Artery Embolization in Sheep: Comparison of Acute Effects with Polyvinyl Alcohol Particles and Calibrated Microspheres." Radiology 224, no. 2 (Aug): 436–45. doi: 10.1148/radiol.2242010847.
- 3. Verret et al. 2011. "The Arterial Distribution of Embozene and Embosphere Microspheres in Sheep Kidney and Uterus Embolization Models." J Vasc Interv Radiol 22, no. 2 (Feb): 220-8. doi: 10.1016/j.jvir.2010.10.021.
- 5. Siskin et al. 2008. "Leiomyoma Infarction After Uterine Artery Embolization: A Prospective Randomized Study Comparing Tris-Acryl Gelatin Microspheres Versus Polyvinyl Alcohol Microspheres." J Vasc Interv Radiol 19, no. 1 (Jan): 42–46. doi: 10.1016/j.jvir.2007.08.034.
- 6. Maclean et al. 2021. "A Comprehensive Cohort Study Comparing a Novel, Spherical, Resorbable Particle Against Five Established Embolic Agents for Uterine Fibroid Embolisation." Clin Radiol 76, no. 6 (June) 452-57. Accessed February 07, 2025. doi: 10.1016/j.crad.2021.01.012. Epub 2021 Feb 23.

Before using refer to Instructions for Use for indications, contraindications, warnings, precautions, and directions for use.

Understand. Innovate. Deliver."